Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Societal Impact StatementAgricultural practices have had a negative impact on the physical, chemical, and biological components of soil. Perennial cropping systems that facilitate positive soil microbial interactions could not only rebuild soils but also sustain productivity through expected variations in environmental conditions. Here, we show the presence of arbuscular mycorrhizal (AM) fungi, soil symbionts that can improve host performance and soil health, increased the growth of intermediate wheatgrass, a novel perennial grain crop, in populations that have been increasingly bred for desirable agricultural characteristics. The right pairing of intermediate wheatgrass and a beneficial AM fungal community could lead to more sustainable agroecosystems. SummaryIntermediate wheatgrass (IWG) is a novel perennial grain that can provide many soil health benefits in agroecosystems; however, little is known about how selection for agronomic traits has impacted interactions with soil biota. Here, we assess how the selection for agronomic traits in IWG has impacted its relationship with arbuscular mycorrhizal (AM) fungi.First, growth response to AM fungi was compared across five generations of IWG with varying degrees of selection. Second, variation in AM fungal responsiveness was compared among genets of IWG individuals within a more advanced generation. Finally, a meta‐analysis was performed on all published studies exploring AM fungal inocula effects on IWG performance to increase understanding of selection effects.AM fungal responsiveness increased with selection for agronomic traits, responsiveness varied among genets in the advanced generation, and a majority of genets performed better in the presence of AM fungi. The meta‐analysis supported the findings that AM fungal responsiveness has increased with selection in IWG.Further studies are needed to realize the combined potential soil health and sustainability benefits of IWG and AM fungi, including assessment of symbiotic benefits beyond biomass production, identification of IWG traits correlated with responsiveness, and characterization of AM fungal community response to IWG.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract Soil-borne pathogens structure plant communities, shaping their diversity, and through these effects may mediate plant responses to climate change and disturbance. Little is known, however, about the environmental determinants of plant pathogen communities. Therefore, we explored the impact of climate gradients and anthropogenic disturbance on root-associated pathogens in grasslands. We examined the community structure of two pathogenic groups—fungal pathogens and oomycetes—in undisturbed and anthropogenically disturbed grasslands across a natural precipitation and temperature gradient in the Midwestern USA. In undisturbed grasslands, precipitation and temperature gradients were important predictors of pathogen community richness and composition. Oomycete richness increased with precipitation, while fungal pathogen richness depended on an interaction of precipitation and temperature, with precipitation increasing richness most with higher temperatures. Disturbance altered plant pathogen composition and precipitation and temperature had a reduced effect on pathogen richness and composition in disturbed grasslands. Because pathogens can mediate plant community diversity and structure, the sensitivity of pathogens to disturbance and climate suggests that degradation of the pathogen community may mediate loss, or limit restoration of, native plant diversity in disturbed grasslands, and may modify plant community response to climate change.more » « less
-
Summary Pyrogenic savannas with a tree–grassland ‘matrix’ experience frequent fires (i.e. every 1–3 yr). Aboveground responses to frequent fires have been well studied, but responses of fungal litter decomposers, which directly affect fuels, remain poorly known. We hypothesized that each fire reorganizes belowground communities and slows litter decomposition, thereby influencing savanna fuel dynamics.In a pine savanna, we established patches near and away from pines that were either burned or unburned in that year. Within patches, we assessed fungal communities and microbial decomposition of newly deposited litter. Soil variables and plant communities were also assessed as proximate drivers of fungal communities.Fungal communities, but not soil variables or vegetation, differed substantially between burned and unburned patches. Saprotrophic fungi dominated in unburned patches but decreased in richness and relative abundance after fire. Differences in fungal communities with fire were greater in litter than in soils, but unaffected by pine proximity. Litter decomposed more slowly in burned than in unburned patches.Fires drive shifts between fire‐adapted and sensitive fungal taxa in pine savannas. Slower fuel decomposition in accordance with saprotroph declines should enhance fuel accumulation and could impact future fire characteristics. Thus, fire reorganization of fungal communities may enhance persistence of these fire‐adapted ecosystems.more » « less
An official website of the United States government
